首页> 外文OA文献 >Imposing tree-based topologies onto self organizing maps
【2h】

Imposing tree-based topologies onto self organizing maps

机译:将基于树的拓扑强加到自组织地图上

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The beauty of the Kohonen map is that it has the property of organizing the codebook vectors, which represent the data points, both with respect to the underlying distribution and topologically. This topology is traditionally linear, even though the underlying lattice could be a grid, and this has been used in a variety of applications [23,35,40]. The most prominent efforts to render the topology to be structured involves the Evolving Tree (ET) due to Pakkanen et al. [36], and the Self-Organizing Tree Maps (SOTM) due to Guan et al. [18], among others. In this paper we propose a strategy, the Tree-Based Topology-Oriented SOM (TTOSOM) by which we can impose an arbitrary, user-defined, tree-like topology onto the codebooks. Such an imposition enforces a neighborhood phenomenon which is based on the user-defined tree, and consequently renders the so-called bubble of activity to be drastically different from the ones defined in the prior literature. The map learned as a consequence of training with the TTOSOM is able to infer both the distribution of the data and its structured topology interpreted via the perspective of the user-defined tree. The TTOSOM also reveals multi-resolution capabilities, which are helpful for representing the original data set with different numbers of points, and this can be obtained without the necessity of recomputing the whole tree. The ability to extract an skeleton, which is a "stick-like" representation of the image in a lower dimensional space, is discussed as well. These properties has been confirmed by our experimental results on a variety of data sets
机译:Kohonen映射的优点在于,它具有组织代码本向量的特性,这些代码本向量在基础分布和拓扑结构方面均代表数据点。即使基础晶格可以是网格,这种拓扑传统上也是线性的,并且已在多种应用中使用[23,35,40]。由于Pakkanen等人的缘故,使拓扑结构得以结构化的最突出努力涉及进化树(ET)。 [36],以及由于关等人的自组织树图(SOTM)。 [18]等。在本文中,我们提出了一种策略,即基于树的面向拓扑的SOM(TTOSOM),通过该策略,我们可以将任意的,用户定义的,类似树的拓扑强加给代码本。这样的强加强制了基于用户定义的树的邻域现象,因此使得所谓的活动泡沫与现有文献中所定义的泡沫大不相同。由于使用TTOSOM进行训练而获得的地图能够推断出数据的分布及其通过用户定义树的角度解释的结构化拓扑。 TTOSOM还显示了多分辨率功能,有助于以不同数量的点表示原始数据集,而无需重新计算整个树就可以实现。还讨论了提取骨骼的能力,该骨骼是在低维空间中图像的“棒状”表示。这些性质已通过我们在各种数据集上的实验结果得到证实

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号